C-type natriuretic peptide does not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade

型利钠肽不会减轻缺氧和 VEGF 受体阻断引起的肺动脉高压的发展

阅读:5
作者:Brian Casserly, Jeffrey M Mazer, Alexander Vang, Elizabeth O Harrington, James R Klinger, Sharon Rounds, Gaurav Choudhary

Aims

C-type natriuretic peptide (CNP) is a local regulator of vascular tone and remodeling in many vascular beds. However, the role of CNP in modulating pulmonary arterial hypertensive and vascular remodeling responses is unclear. The purpose of this study was to determine if CNP is capable of preventing the development of pulmonary hypertension (PH). Main

Methods

We used animal models of PH caused by chronic hypoxia alone or in combination with the vascular endothelial growth factor (VEGF) receptor blocker SU5416. We measured pulmonary hemodynamics, right ventricular hypertrophy and vascular remodeling effects in response to a continuous infusion of low dose or high dose CNP or vehicle placebo. Key findings: Right ventricular hypertrophy and a marked elevation in right ventricular systolic pressure (RVSP) were seen in both models of PH. Rats treated with the combination of SU5416 and chronic hypoxia also developed pulmonary endothelial hyperproliferative lesions. Continuous intravenous infusion of CNP at either dose did not attenuate the development of PH, right ventricular hypertrophy or vascular remodeling in either of the models of PH despite a three-fold increase in serum CNP levels. Significance: CNP does not prevent the development of PH in the chronic hypoxia or SU5416 plus hypoxia models of pulmonary hypertension suggesting that CNP may not play an important modulatory role in human PH.

Significance

CNP does not prevent the development of PH in the chronic hypoxia or SU5416 plus hypoxia models of pulmonary hypertension suggesting that CNP may not play an important modulatory role in human PH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。