Engineering the Turnover Stability of Cellobiose Dehydrogenase toward Long-Term Bioelectronic Applications

改造纤维二糖脱氢酶的周转稳定性以实现长期生物电子应用

阅读:5
作者:Andreas F Geiss, Thomas M B Reichhart, Barbara Pejker, Esther Plattner, Peter L Herzog, Christopher Schulz, Roland Ludwig, Alfons K G Felice, Dietmar Haltrich

Abstract

Cellobiose dehydrogenase (CDH) is an attractive oxidoreductase for bioelectrochemical applications. Its two-domain structure allows the flavoheme enzyme to establish direct electron transfer to biosensor and biofuel cell electrodes. Yet, the application of CDH in these devices is impeded by its limited stability under turnover conditions. In this work, we aimed to improve the turnover stability of CDH by semirational, high-throughput enzyme engineering. We screened 13 736 colonies in a 96-well plate setup for improved turnover stability and selected 11 improved variants. Measures were taken to increase the reproducibility and robustness of the screening setup, and the statistical evaluation demonstrates the validity of the procedure. The selected CDH variants were expressed in shaking flasks and characterized in detail by biochemical and electrochemical methods. Two mechanisms contributing to turnover stability were found: (i) replacement of methionine side chains prone to oxidative damage and (ii) the reduction of oxygen reactivity achieved by an improved balance of the individual reaction rates in the two CDH domains. The engineered CDH variants hold promise for the application in continuous biosensors or biofuel cells, while the deduced mechanistic insights serve as a basis for future enzyme engineering approaches addressing the turnover stability of oxidoreductases in general.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。