Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation

脂质过氧化形成的新型生物活性醛修饰磷脂酰乙醇胺的鉴定

阅读:5
作者:Lilu Guo, Zhongyi Chen, Venkataraman Amarnath, Sean S Davies

Abstract

Lipid aldehydes generated by lipid peroxidation induce cell damage and inflammation. Recent evidence indicates that γ-ketoaldehydes (isolevuglandins, IsoLGs) form inflammatory mediators by modifying the ethanolamine headgroup of phosphatidylethanolamines (PEs). To determine if other species of aldehyde-modified PEs (al-PEs) with inflammatory bioactivity were generated by lipid peroxidation, we oxidized liposomes containing arachidonic acid and characterized the resulting products. We detected PE modified by IsoLGs, malondialdehyde (MDA), and 4-hydroxynonenal (HNE), as well as a novel series of N-acyl-PEs and N-carboxyacyl-PEs in these oxidized liposomes. These al-PEs were also detected in high-density lipoproteins exposed to myeloperoxidase. When we tested the ability of al-PEs to induce THP-1 monocyte adhesion to cultured endothelial cells, we found that PEs modified by MDA, HNE, and 4-oxononenal induced adhesion with potencies similar to those of PEs modified by IsoLGs (∼2μM). A commercially available medium-chain N-carboxyacyl-PE (C11:0CAPE) also stimulated adhesion, whereas C4:0CAPE and N-acyl-PEs did not. PEs modified by acrolein or by glucose were only partial agonists for adhesion. These studies indicate that lipid peroxidation generates a large family of al-PEs, many of which have the potential to drive inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。