PRKRA promotes pancreatic cancer progression by upregulating MMP1 transcription via the NF-κB pathway

PRKRA 通过 NF-κB 通路上调 MMP1 转录,促进胰腺癌进展

阅读:4
作者:Jiangdong Qiu, Mengyu Feng, Gang Yang, Dan Su, Fangyu Zhao, Yueze Liu, Jinxin Tao, Wenhao Luo, Taiping Zhang

Conclusions

Our study indicated that the PRKRA/NF-κB/MMP1 axis promoted the progression of PC and may serve as a potential therapeutic target and prognosis marker.

Methods

The expression of PRKRA between normal and tumor tissues were compared, and the prognostic value of PRKRA was evaluated. SiRNA and plasmids were applied to investigate the effects of PRKRA on PC cells. Organoids and cell lines with knockout and overexpression of PRKRA were established by CRISPR/Cas9 and lentivirus. The effects of PRKRA on PC were evaluated in vivo by cell-derived xenografts. The downstream genes of PRKRA were screened by transcriptome sequencing. The regulation of the target gene was validated by RT-qPCR, western blot, ChIP and dual luciferase reporter assay. Besides, the correlation between PRKRA and gemcitabine sensitivity was investigated by PC organoids.

Objective

Pancreatic cancer (PC) is highly malignant, but the underlying mechanisms of cancer progression remain unclear. PRKRA is involved in cellular stress response, but its role in PC was unknown.

Results

PRKRA was significantly overexpressed in PC tissues and independently associated with poor prognosis. PRKRA promoted the proliferation, migration, and chemoresistance of PC cells. The proliferation of PC organoids was decreased by PRKRA knockout. The growth and chemoresistance of xenografts were increased by PRKRA overexpression. Mechanistically, PRKRA upregulated the transcription of MMP1 via NF-κB pathway. ChIP and dual luciferase reporter assay showed that NF-κB subunit P65 could bind to the promoter of MMP1. The sensitivity of PC organoids to gemcitabine was negatively correlated with the expression of PRKRA and MMP1. Conclusions: Our study indicated that the PRKRA/NF-κB/MMP1 axis promoted the progression of PC and may serve as a potential therapeutic target and prognosis marker.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。