The TwistDock workflow for evaluation of bivalent Smac mimetics targeting XIAP

TwistDock 工作流程用于评估针对 XIAP 的二价 Smac 类似物

阅读:8
作者:Qingsheng Huang, Yin Peng, Yuefeng Peng, Dan Wei, Yanjie Wei, Shengzhong Feng

Conclusion

TwistDock can be used in fine-tuning of bivalent ligands targeting XIAP and similar receptors dimerized or oligomerized.

Methods

To construct an ensemble of bivalent complex structures for evaluating various linkers, we propose herein a workflow, named TwistDock, consisting of steps of monovalent docking and linker twisting, in which the degrees of freedom are sampled focusing on the rotation of single bonds of the linker.

Purpose

Mimetics based on Smac, the native inhibitor of XIAP, are promising drug-candidates for the treatment of cancer. Bivalent Smac mimetics inhibit XIAP with even higher potency than monovalent mimetics, but how to optimize the linker that tethers the two monovalent binding motifs remains controversial.

Results

The obtained conformations of bivalent complex distribute randomly in the conformational space with respect to two reaction coordinates introduced by the linker, which are the distance of the two binding motifs and the dihedral angle of the two planes through the linker and each of the binding motifs. Molecular dynamics starting from 10 conformations with the lowest enthalpy of every complex shows that the conformational tendency of the complex participated by compound 9, one of the compounds with the largest binding affinity, is distinct from others. By umbrella sampling of the complex, we find its global minimum of the free energy landscape. The structure shows that the linker favors a compact conformation, and the two BIR domains of XIAP encompass the ligand on the opposite sides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。