Stability of a Mutualistic Escherichia coli Co-Culture During Violacein Production Depends on the Kind of Carbon Source

紫罗兰素生产过程中互利大肠杆菌共培养的稳定性取决于碳源的种类

阅读:10
作者:Simon Schick, Tobias Müller, Ralf Takors, Georg A Sprenger

Abstract

The L-tryptophan-derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding Escherichia coli co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L-1 in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。