Addressing the Metabolic Stability of Antituberculars through Machine Learning

通过机器学习解决抗结核药物的代谢稳定性问题

阅读:5
作者:Thomas P Stratton, Alexander L Perryman, Catherine Vilchèze, Riccardo Russo, Shao-Gang Li, Jimmy S Patel, Eric Singleton, Sean Ekins, Nancy Connell, William R Jacobs Jr, Joel S Freundlich

Abstract

We present the first prospective application of our mouse liver microsomal (MLM) stability Bayesian model. CD117, an antitubercular thienopyrimidine tool compound that suffers from metabolic instability (MLM t1/2 < 1 min), was utilized to assess the predictive power of our new MLM stability model. The S-substituent was removed, a set of commercial reagents was utilized to construct a virtual library of 411 analogues, and our MLM stability model was applied to prioritize 13 analogues for synthesis and biological profiling. In MLM stability assays, all 13 analogues had superior metabolic stability to the parent compound, and six new analogues had acceptable MLM t1/2 values greater than or equal to 60 min. It is noteworthy that whole-cell efficacy and lack of relative mammalian cell cytotoxicity could not be predicted simultaneously. These results support the utility of our new MLM stability model in chemical tool and drug discovery optimization efforts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。