Efficient protocol for isolating human fibroblast from primary skin cell cultures: application to keloid, hypertrophic scar, and normal skin biopsies

从原代皮肤细胞培养物中分离人类成纤维细胞的有效方案:应用于瘢痕疙瘩、增生性瘢痕和正常皮肤活检

阅读:10
作者:Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah

Abstract

This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。