MicroRNA-203 mimics age-related aortic smooth muscle dysfunction of cytoskeletal pathways

MicroRNA-203 模拟与年龄相关的主动脉平滑肌细胞骨架通路功能障碍

阅读:6
作者:Christopher J Nicholson, Francesca Seta, Sophie Lee, Kathleen G Morgan

Abstract

Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src-dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi-scale approach to determine the molecular mechanisms behind defective Src-dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src-dependent cytoskeletal remodelling. qRT-PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR-203 increased almost twofold in aged aorta. Increased miR-203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin-1 and paxillin in aged aorta. Probing with phospho-specific antibodies confirmed that overexpression of miR-203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR-203 into aortic tissue from young mice increased phenylephrine-induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR-203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR-203 expression. Thus, the age-induced increase in miR-203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR-203 promotes a re-programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。