Quiescin-sulfhydryl oxidase inhibits prion formation in vitro

静息蛋白巯基氧化酶体外抑制朊病毒的形成

阅读:8
作者:Yi-An Zhan, Romany Abskharon, Yu Li, Jue Yuan, Liang Zeng, Johnny Dang, Manuel Camacho Martinez, Zerui Wang, Jacqueline Mikol, Sylvain Lehmann, Shizhong Bu, Jan Steyaert, Li Cui, Robert B Petersen, Qingzhong Kong, Gong-Xiang Wang, Alexandre Wohlkonig, Wen-Quan Zou4

Abstract

Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。