Resistance training improves indices of muscle insulin sensitivity and β-cell function in overweight/obese, sedentary young men

阻力训练可改善超重/肥胖、久坐的年轻男性的肌肉胰岛素敏感性和 β 细胞功能指标

阅读:4
作者:Daniel M Croymans, Ergit Paparisto, Mary M Lee, Nina Brandt, Brian K Le, Derek Lohan, Cathy C Lee, Christian K Roberts

Abstract

We examined the effects of RT on oral glucose tolerance test (OGTT)-derived indices of muscle insulin sensitivity, hepatic insulin resistance, β-cell function, and skeletal muscle proteins related to glucose transport in overweight/obese, sedentary young men. Twenty-eight participants [median body mass index (BMI) 30.9 kg/m(2); age 22 yr] completed 12 wk of RT (3 sessions/wk) and were assessed for changes in OGTT-derived indices, resting metabolic rate, body composition, serum adipokines, and skeletal muscle protein content [hexokinase 2 (HK2), glucose transporter type 4 (GLUT4), RAC-β serine/threonine-protein kinase (AKT2), glycogen synthase kinase 3β, and insulin receptor substrate 1]. Individualized responses to RT were also evaluated. RT significantly improved insulin and glucose area under the curve (both P < 0.03). With the use of OGTT indices of insulin action, we noted improved muscle insulin sensitivity index (mISI; P = 0.03) and oral disposition index (P = 0.03). BMI, lean body mass (LBM), and relative strength also increased (all P < 0.03), as did skeletal muscle protein content of HK2, GLUT4, and AKT2 (26-33%; all P < 0.02). Hepatic insulin resistance index, adiponectin, leptin, and total amylin did not change. Further analysis demonstrated the presence of highly individualized responsiveness to RT for glucose tolerance and other outcomes. RT improved oral indices of muscle insulin sensitivity and β-cell function but not hepatic insulin resistance in overweight/obese young men. In addition to the increase in LBM, the improvements in insulin action may be due, in part, to increases in key insulin signaling proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。