A novel high throughput immunomagnetic cell sorting system for potential clinical scale depletion of T cells for allogeneic stem cell transplantation

一种新型高通量免疫磁性细胞分选系统,可用于异基因干细胞移植的潜在临床规模T细胞耗竭

阅读:9
作者:Xiaodong Tong, Ying Xiong, Maciej Zborowski, Sherif S Farag, Jeffrey J Chalmers

Conclusion

We suggest that this system will provide superior performance with respect to T-cell depletion and CD34(+) recovery for clinical allogeneic bone marrow transplants. Ongoing studies, on a clinical scale, are being conducted to demonstrate this claim.

Methods

Peripheral blood leukocytes (PBLs) from buffy coats were spiked with CD34-expressing cells (KG1a) to mimic a leukaphoresis product containing stimulated HSCs. T cells were labeled with anti-CD3(+) Dynabeads and separated in a quadrupole magnetic cell sorter (QMS). The performance of the system with respect to T-cell depletion and recovery of non-T cells and spiked KG1a was determined using four-color, flow cytometry analysis, with the aid of Trucount cell-concentration calibration beads. Limiting dilution assays were also performed to quantify the log(10) depletion of clonable T cells.

Objective

To develop an immunomagnetic cell separation system for allogeneic hematopoietic stem cell (HSC) transplantations, which can achieve a high level of T-cell depletion (at least 4.0 log(10)), high level of recovery of hematopoietic stem cells (>90%), with a high throughput (>10(6) cells/second).

Results

While the general performance of the QMS system is governed by proven theoretical principles, significant system variability exist, not all of which can be explained by our current understanding. Consequently, a factorial design was employed, guided by JMP software, to optimize the labeling conditions and operation of the QMS focused on maximizing the depletion of T cell, and recovery of unlabeled cells including KG1a cells. From these studies, an optimized, no wash, immunomagnetic labeling protocol and optimized QMS operating conditions were developed. For an average initial cell concentration of 1.7 x 10(8) total cells, an average 3.96 +/- 0.33 log(10) depletion (range, 3.53-4.34) of CD3(+)CD45(+) cells with a mean 99.43% +/- 4.23% recovery of CD34(+)CD45(+) cells (range, 94.38-104.90%) was achieved at a sorting speed of 10(6) cells/s (n = 6). Limiting dilution assays on the T-cell depleted fractions, which gave a log(10) depletion of 3.51 for the clonable T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。