Freezing stress survival mechanisms in Vaccinium macrocarpon Ait. terminal buds

大果越橘顶芽抗冻胁迫存活机制

阅读:6
作者:Camilo Villouta, Beth Ann Workmaster, Jenny Bolivar-Medina, Smith Sinclair, Amaya Atucha

Abstract

Plants' mechanisms for surviving freezing stresses are essential adaptations that allow their existence in environments with extreme winter temperatures. Although it is known that Vaccinium macrocarpon Ait. buds can acclimate in fall and survive very cold temperatures during the winter, the mechanism for survival of these buds is not known. The main objective of this study was to determine which of the two major mechanisms of freezing stress survival, namely, deep supercooling or freeze-induced dehydration, are employed by V. macrocarpon terminal buds. In the present study, no low-temperature exotherms (LTEs) were detected by differential thermal analysis. Furthermore, a gradual reduction of relative liquid water content in the inner portions of buds during magnetic resonance imaging (MRI) scans performed between 0 and -20 °C (where no damage was detected in controlled freezing tests (CFT)) indicates these buds may not deep supercool. The higher ice nucleation activity of outer bud scales and the appearance of large voids in this structure in early winter, in conjunction with the MRI observations, are evidence supportive of a freeze-induced dehydration process. In addition, the presence of tissue browning in acclimated buds as a result of freezing stress was only observed in CFT at temperatures below -20 °C, and this damage gradually increased as test temperatures decreased and at different rates depending on the bud structure. Ours is the first study to collect multiple lines of evidence to suggest that V. macrocarpon terminal buds survive long periods of freezing stress by freeze-induced dehydration. Our results provide a framework for future studies of cold hardiness dynamics for V. macrocarpon and other woody perennial species and for the screening of breeding populations for freezing stress tolerance traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。