Grazer cues induce stealth behavior in marine dinoflagellates

食草动物的线索诱发海洋甲藻的隐身行为

阅读:5
作者:Erik Selander, Hans H Jakobsen, Fabien Lombard, Thomas Kiørboe

Abstract

Chain formation is common among phytoplankton organisms but the underlying reasons and consequences are poorly understood. Here we show that chain formation is strongly impaired by waterborne cues from copepod grazers in the dinoflagellate Alexandrium tamarense. Chains of Alexandrium cells exposed to copepod cues responded by splitting into single cells or shorter chains. Motion analysis revealed significantly lower swimming velocities for single cells compared with chains, with two- to fivefold higher simulated predator encounter rates for two- and four-cell chains, respectively. In addition, the few remaining two-cell chains in grazed treatments were swimming at approximately half the speed of two-cell chains in treatments without grazers, which reduced encounter rates with grazers to values similar to that of single cells. Chain length plasticity and swimming behavior constitute unique mechanisms to reduce encounters with grazers. We argue that dinoflagellates can regulate the balance between motility and predator avoidance by adjusting chain length. The high predator encounter rate for motile chains may have contributed to the low prevalence of chain formation in motile phytoplankton compared with in nonmotile phytoplankton where chain formation is more common.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。