Large-scale analysis of UPR-mediated apoptosis in human cells

UPR 介导的人类细胞凋亡的大规模分析

阅读:4
作者:Andrew M Fribley, Justin R Miller, Tyler E Reist, Michael U Callaghan, Randal J Kaufman

Abstract

The historic distinction between academic- and industry-driven drug discovery, whereby academicians worked to identify therapeutic targets and pharmaceutical companies advanced probe discovery, has been blurred by an academic high-throughput chemical genomic revolution. It is now common for academic labs to use biochemical or cell-based high-throughput screening (HTS) to investigate the effects of thousands or even hundreds of thousands of chemical probes on one or more targets over a period of days or weeks. To support the efforts of individual investigators, many universities have established core facilities where screening can be performed collaboratively with large chemical libraries managed by highly trained HTS personnel and guided by the experience of computational, medicinal, and synthetic organic chemists. The identification of large numbers of promising hits from such screens has driven the need for independent labs to scale down secondary in vitro assays in the hit to lead identification process. In this chapter, we will describe the use of luminescent and quantitative reverse transcription real-time PCR (qRT-PCR) technologies that permit evaluation of the expression patterns of multiple unfolded protein response (UPR) and apoptosis-related genes, and simultaneously evaluate proliferation and cell death in 96- or 384-well format.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。