Post-transcriptional regulation in the myo1Δ mutant of Saccharomyces cerevisiae

酿酒酵母 myo1Δ 突变体的转录后调控

阅读:8
作者:Marielis E Rivera-Ruiz, José F Rodríguez-Quiñones, Pearl Akamine, José R Rodríguez-Medina

Background

Saccharomyces cerevisiae myosin type II-deficient (myo1Δ) strains remain viable and divide, despite the absence of a cytokinetic ring, by activation of the PKC1-dependent cell wall integrity pathway (CWIP). Since the myo1Δ transcriptional fingerprint is a subset of the CWIP fingerprint, the myo1Δ strain may provide a simplified paradigm for cell wall stress survival.

Conclusions

Quantitative analysis of ribosome-associated mRNAs and their polyribosome distributions suggests selective regulation of mRNA translation efficiency in myo1Δ strains. Inhibition of translation initiation factor eIF2α (eIF2α-P) in these strains was by Gcn2p-dependent phosphorylation. The increase in the levels of eIF2α-P; the genetic interaction between GCN2 and MYO1; and the reduced levels of eIF4Gp suggest that other signaling pathways, in addition to the CWIP, may be important for myo1Δ strain survival. Selective co-immunoprecipitation of RP mRNAs with eIF2α-P in myo1Δ strains suggests a novel mode of translational regulation. These results indicate that post-transcriptional control is important in the myo1Δ stress response and possibly other stresses in yeast.

Results

To explore the post-transcriptional regulation of the myo1Δ stress response, 1,301 differentially regulated ribosome-bound mRNAs were identified by microarray analysis of which 204 were co-regulated by transcription and translation. Four categories of mRNA were significantly affected - protein biosynthesis, metabolism, carbohydrate metabolism, and unknown functions. Nine genes of the 20 CWIP fingerprint genes were post-transcriptionally regulated. Down and up regulation of selected ribosomal protein and cell wall biosynthesis mRNAs was validated by their distribution in polysomes from wild type and myo1Δ strains. Western blot analysis revealed accumulation of the phosphorylated form of eukaryotic translation initiation factor 2 (eIF2α-P) and a reduction in the steady state levels of the translation initiation factor eIF4Gp in myo1Δ strains. Deletion of GCN2 in myo1Δ abolished eIF2αp phosphorylation, and showed a severe growth defect. The presence of P-bodies in myo1Δ strains suggests that the process of mRNA sequestration is active, however, the three representative down regulated RP mRNAs, RPS8A, RPL3 and RPL7B were present at equivalent levels in Dcp2p-mCh-positive immunoprecipitated fractions from myo1Δ and wild type cells. These same RP mRNAs were also selectively co-precipitated with eIF2α-P in myo1Δ strains. Conclusions: Quantitative analysis of ribosome-associated mRNAs and their polyribosome distributions suggests selective regulation of mRNA translation efficiency in myo1Δ strains. Inhibition of translation initiation factor eIF2α (eIF2α-P) in these strains was by Gcn2p-dependent phosphorylation. The increase in the levels of eIF2α-P; the genetic interaction between GCN2 and MYO1; and the reduced levels of eIF4Gp suggest that other signaling pathways, in addition to the CWIP, may be important for myo1Δ strain survival. Selective co-immunoprecipitation of RP mRNAs with eIF2α-P in myo1Δ strains suggests a novel mode of translational regulation. These results indicate that post-transcriptional control is important in the myo1Δ stress response and possibly other stresses in yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。