Two modes of microtubule sliding driven by cytoplasmic dynein

细胞质动力蛋白驱动的两种微管滑动模式

阅读:7
作者:Tomohiro Shima, Takahide Kon, Kenji Imamula, Reiko Ohkura, Kazuo Sutoh

Abstract

Dynein is a huge multisubunit microtubule (MT)-based motor, whose motor domain resides in the heavy chain. The heavy chain comprises a ring of six AAA (ATPases associated with diverse cellular activities) modules with two slender protruding domains, the tail and stalk. It has been proposed that during the ATP hydrolysis cycle, this tail domain swings against the AAA ring as a lever arm to generate the power stroke. However, there is currently no direct evidence to support the model that the tail swing is tightly linked to dynein motility. To address the question of whether the power stroke of the tail drives MT sliding, we devised an in vitro motility assay using genetically biotinylated cytoplasmic dyneins anchored on a glass surface in the desired orientation with a biotin-streptavidin linkage. Assays on the dyneins with the site-directed biotin tag at eight different locations provided evidence that robust MT sliding is driven by the power stroke of the tail. Furthermore, the assays revealed slow MT sliding independent of dynein orientation on the glass surface, which is mechanically distinct from the sliding driven by the power stroke of the tail.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。