Atypical biosynthetic properties of a Delta 12/nu+3 desaturase from the model basidiomycete Phanerochaete chrysosporium

模型担子菌 Phanerochaete chrysosporium 的 Delta 12/nu+3 去饱和酶的非典型生物合成特性

阅读:13
作者:Robert E Minto, Brenda J Blacklock, Hina Younus, Andrew C Pratt

Abstract

The model white-rot basidiomycete Phanerochaete chrysosporium contains a single integral membrane Delta(12)-desaturase FAD2 related to the endoplasmic reticular plant FAD2 enzymes. The fungal fad2-like gene was cloned and distinguished itself from plant homologs by the presence of four introns and a significantly larger coding region. The coding sequence exhibits ca. 35% sequence identity to plant homologs, with the highest sequence conservation found in the putative catalytic and major structural domains. In vivo activity of the heterologously expressed enzyme favors C(18) substrates with nu+3 regioselectivity, where the site of desaturation is three carbons carboxy-distal to the reference position of a preexisting double bond (nu). Linoleate accumulated to levels in excess of 12% of the total fatty acids upon heterologous expression of P. chrysosporium FAD2 in Saccharomyces cerevisiae. In contrast to the behavior of the plant FAD2 enzymes, this oleate desaturase does not 12-hydroxylate lipids and is the first example whose activity increases at higher temperatures (30 degrees C versus 15 degrees C). Thus, while maintaining the hallmark activity of the fatty acyl Delta(12)-desaturase family, the basidiomycete fad2 genes appear to have evolved substantially from an ancestral desaturase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。