CX43-mediated mitochondrial transfer maintains stemness of KG-1a leukemia stem cells through metabolic remodeling

CX43 介导的线粒体转移通过代谢重塑维持 KG-1a 白血病干细胞的干细胞性

阅读:6
作者:Huihui Fu #, Xiaoqing Xie #, Liuyue Zhai, Yi Liu, Yifeng Tang, Sanxiu He, Jun Li, Qing Xiao, Guofa Xu, Zailin Yang, Xiaomei Zhang, Yao Liu

Background

Acute myeloid leukemia (AML) is characterized by abundant immature myeloid cells, relapse and refractory due to leukemia stem cells (LSCs). Bone marrow mesenchymal stem/ stromal cells (BMSCs) supported LSCs survival, meanwhile, chemotherapy improved connexin43 (CX43) expression. CX43, as the most intercellular gap junction, facilitated transmit mitochondria from BMSCs into AML. We hypothesized that increased mitochondria transferred from BMSCs supported metabolic remodeling in LSCs to sustain their stemness.

Conclusion

CX43-mediated mitochondrial transfer from BMSCs to KG-1a enhances LSCs adhesion, proliferation, clonogenicity, and metabolic reprogramming. CX43 emerges as a potential therapeutic target for AML by sustaining LSCs stemness through metabolic remodeling.

Methods

Primary BMSCs from AML patients were isolated. CX43-BMSCs, overexpressing CX43, were cocultured with KG-1a cells. Fluorescence and confocal microscopy observed mitochondrial transfer. Flow cytometry, EdU assay, and clonogenicity evaluated cell cycle, proliferation, and clonogenic potential. Xenograft mouse models were used to evaluate the tumorigenicity of KG-1a in vivo. Seahorse, RNA-seq, and LC-MS assessed mitochondrial function, transcriptomes, and metabolites post-coculture.

Results

CX43-BMSCs promoted unidirectional mitochondrial transfer, enhancing KG-1a adhesion and proliferation to maintain LSCs stemness in vitro and vivo. RNA-seq revealed coculture with CX43-BMSCs upregulated genes related to adhesion, proliferation, and migration in KG-1a cells. Elevated CX43 expression strengthened BMSCs-KG-1a interaction, facilitating mitochondrial transfer and nucleoside metabolism, fueling KG-1a cells. This enhanced mitochondrial energy metabolism, promoting metabolic reprogramming and clonogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。