Preferential conduction block of myelinated axons by nitric oxide

一氧化氮优先阻断髓鞘轴突的传导

阅读:10
作者:Peter Shrager, Margaret Youngman

Abstract

Conduction block by nitric oxide (NO) was examined in myelinated and unmyelinated axons from both the central nervous system and peripheral nervous system. In rat vagus nerves, mouse optic nerves at P12-P23, adult and developing mouse sciatic nerves, and mouse spinal cords, myelinated fibers were preferentially blocked reversibly by concentrations of NO similar to those encountered in inflammatory lesions. The possibility that these differences between myelinated and unmyelinated axons are due to the normal developmental substitution of Na+ channel subtype Nav 1.6 for Nav 1.2 at nodes of Ranvier was tested by repeating experiments on mice null for Nav 1.6. Results were unchanged in this mutant. In shiverer optic nerve, which has only scattered regions with nodes of Ranvier, only the fastest component of the compound action potential was reduced. NO was compared with three other methods of blocking conduction: low Na+ , high K+ , and tetrodotoxin (TTX). In each of these three cases, unmyelinated axons lost conduction simultaneously with myelinated fibers. From changes in conduction velocity in myelinated axons as they were blocked, it was ascertained that NO acted most similarly to TTX. It was concluded that NO likely interacts with axonal Na+ channels through an intermediate that is associated with myelin. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。