Retinoblastoma-binding Protein 9 Suppresses Intestinal Inflammation and Inflammation-induced Tumorigenesis in Mice

视网膜母细胞瘤结合蛋白 9 抑制小鼠肠道炎症和炎症诱导的肿瘤发生

阅读:10
作者:Kensuke Hamada, Yuki Nakanishi, Yu Muta, Mayuki Omatsu, Kosuke Iwane, Munehiro Ikeda, Jiayu Chen, Yoko Masui, Naoki Aoyama, Nobukazu Agatsuma, Go Yamakawa, Takahiro Utsumi, Hiroki Kitamoto, Makoto Okabe, Yoshiro Itatani, Takumi Adachi, Koubun Yasuda, Shuji Yamamoto, Akihisa Fukuda, Etsushi Kuroda, M

Aims

Retinoblastoma-binding protein 9 (RBBP9) was initially reported as cell cycle regulator via RB/E2F. Accumulating evidence has revealed the importance of RBBP9 in physiological and pathological states including inflammatory disease. However, the functional role of RBBP9 in ulcerative colitis (UC) and colitis-associated cancer (CAC) remains elusive.

Background & aims

Retinoblastoma-binding protein 9 (RBBP9) was initially reported as cell cycle regulator via RB/E2F. Accumulating evidence has revealed the importance of RBBP9 in physiological and pathological states including inflammatory disease. However, the functional role of RBBP9 in ulcerative colitis (UC) and colitis-associated cancer (CAC) remains elusive.

Conclusions

RBBP9 suppresses the intestinal inflammation by negatively regulating JAK/STAT1 signaling pathway.

Methods

Human samples of UC and CAC were examined by immunohistochemical and bioinformatics analyses. We established dextran sodium sulfate (DSS)-induced colitis, azoxymethane (AOM)/DSS-induced CAC model, and ApcMin/+ sporadic tumor model using wild-type and Rbbp9-/- mice. RNA sequencing was analyzed to identify the phenotype alternation upon Rbbp9 deletion. In addition, genetic and pharmacological inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) pathway was performed.

Results

The expression of RBBP9 was reduced in human UC and CAC samples. The loss of RBBP9 enhanced the activation of interferon (IFN)/JAK/STAT1 signaling, resulting in susceptibility to DSS-induced colitis and AOM/DSS-induced CAC tumors by increasing epithelial cell apoptosis and immune activation. An in vitro kinase assay revealed that RBBP9 directly regulated JAK/STAT1 signaling by suppressing STAT1 phosphorylation. A positive feedback loop involving epithelial cell apoptosis, commensal microbiome invasion, and activation of submucosal immune activity was identified in Rbbp9-/- mouse intestines through enhanced JAK/STAT1 signaling in RBBP9-deficient epithelial cells and macrophages. The genetic inhibition of STAT1 or treatment with the JAK/STAT inhibitor reversed epithelial cell apoptosis and mitigated the enhanced susceptibility to DSS-induced colitis in Rbbp9-/- mice. Conclusions: RBBP9 suppresses the intestinal inflammation by negatively regulating JAK/STAT1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。