Ceria nanomaterials containing ytterbium: low and high concentration - luminescence analyzed in the near infrared region

含镱的二氧化铈纳米材料:低浓度和高浓度 - 近红外区域的发光分析

阅读:8
作者:Sitshengisiwe Chemura, Tim Schrumpf, Christina Günter, Michael U Kumke

Abstract

Lanthanide based ceria nanomaterials are important practical materials due to the redox properties that are useful in the avenues pertaining to technology and life sciences. Sub 10 nm spherical and highly monodisperse Ce1-xYbxO2-y (0.04 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition, annealed separately at 773 K and 1273 K for 2 hours and characterized. Elemental mapping for Yb3+ doped ceria nanoparticles shows homogeneous distribution of Yb3+ atoms in the ceria with low Yb3+ content annealed at 773 K and 1273 K for 2 hours. However, clusters are observed for 773 K annealed ceria samples with high concentration of Yb3+. These clusters are not detected in 1273 K annealed nanomaterials. Introducing small amounts of Yb3+ ions into the ceria lattice as spectroscopic probes can provide detailed information about the atomic structure and local environments allowing the monitoring of small structural changes, such as clustering. The emission spectra observed at room temperature and at 4 K have a manifold of bands that corresponds to the 2F5/2 → 2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern depending on the sample and the annealing conditions. The deconvolution by PARAFAC analysis yielded luminescence decay kinetics as well as the associated luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high concentration of Yb3+ annealed at the two temperatures showed only one species with lower decay times as compared to the low Yb3+ doped ceria samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。