Blocking hedgehog signaling after ablation of the dorsal neural tube allows regeneration of the cardiac neural crest and rescue of outflow tract septation

消融背神经管后阻断刺猬信号可使心脏神经嵴再生并挽救流出道隔膜

阅读:7
作者:Mary Redmond Hutson, Faustina N Sackey, Katherine Lunney, Margaret L Kirby

Abstract

Cardiac neural crest cells (CNCC) migrate into the caudal pharynx and arterial pole of the heart to form the outflow septum. Ablation of the CNCC results in arterial pole malalignment and failure of outflow septation, resulting in a common trunk overriding the right ventricle. Unlike preotic cranial crest, the postotic CNCC do not normally regenerate. We applied the hedgehog signaling inhibitor, cyclopamine (Cyc), to chick embryos after CNCC ablation and found normal heart development at day 9 suggesting that the CNCC population was reconstituted. We ablated the CNCC, and labeled the remaining neural tube with DiI/CSRE and applied cyclopamine. Cells migrated from the neural tube in the CNCC-ablated, cyclopamine-treated embryos but not in untreated CNCC-ablated embryos. The newly generated cells followed the CNCC migration pathways, expressed neural crest markers and supported normal heart development. Finally, we tested whether reducing hedgehog signaling caused redeployment of the dorsal-ventral axis of the injured neural tube, allowing generation of new neural crest-like cells. The dorsal neural tube marker, Pax7, was maintained 12 h after CNCC ablation with Cyc treatment but not in the CNCC-ablated alone. This disruption of dorsal-ventral neural patterning permits a new wave of migratory cardiac neural crest-like cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。