Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations

假单胞菌中单萜类化合物抗性机制及其对生物转化的影响的研究

阅读:5
作者:Florence Miramella Schempp, Katharina Elisabeth Hofmann, Jia Mi, Ferdinand Kirchner, Annika Meffert, Hendrik Schewe, Jens Schrader, Markus Buchhaupt

Abstract

Monoterpenoids are widely used in industrial applications, e.g. as active ingredients in pharmaceuticals, in flavor and fragrance compositions, and in agriculture. Severe toxic effects are known for some monoterpenoids making them challenging compounds for biotechnological production processes. Some strains of the bacterium Pseudomonas putida show an inherent extraordinarily high tolerance towards solvents including monoterpenoids. An understanding of the underlying factors can help to create suitable strains for monoterpenoids de novo production or conversion. In addition, knowledge about tolerance mechanisms could allow a deeper insight into how bacteria can oppose monoterpenoid containing drugs, like tea tree oil. Within this work, the resistance mechanisms of P. putida GS1 were investigated using selected monoterpenoid-hypertolerant mutants. Most of the mutations were found in efflux pump promoter regions or associated transcription factors. Surprisingly, while for the tested monoterpenoid alcohols, ketone, and ether high efflux pump expression increased monoterpenoid tolerance, it reduced the tolerance against geranic acid. However, an increase of geranic acid tolerance could be gained by a mutation in an efflux pump component. It was also found that increased monoterpenoid tolerance can counteract efficient biotransformation ability, indicating the need for a fine-tuned and knowledge-based tolerance improvement for production strain development.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity. • Reduction of export activity can be beneficial for biotechnological conversions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。