Evaluation of the chicken transcriptome by SAGE of B cells and the DT40 cell line

通过 B 细胞和 DT40 细胞系的 SAGE 评估鸡转录组

阅读:8
作者:Matthias B Wahl, Randolph B Caldwell, Andrzej M Kierzek, Hiroshi Arakawa, Eduardo Eyras, Nina Hubner, Christian Jung, Manuel Soeldenwagner, Manuela Cervelli, Yan-Dong Wang, Volkmar Liebscher, Jean-Marie Buerstedde

Background

The understanding of whole genome sequences in higher eukaryotes depends to a large degree on the reliable definition of transcription units including exon/intron structures, translated open reading frames (ORFs) and flanking untranslated regions. The best currently available chicken transcript catalog is the Ensembl build based on the mappings of a relatively small number of full length cDNAs and ESTs to the genome as well as genome sequence derived in silico gene predictions.

Conclusions

These results suggests that rather few genes are missing in the current Ensembl chicken transcript build, but that the 3' ends of many transcripts may not have been accurately predicted. The tags with no match in the transcript sequences can now be used to improve gene predictions, pinpoint the genomic location of entirely missed transcripts and optimize the accuracy of gene finder software.

Results

We use Long Serial Analysis of Gene Expression (LongSAGE) in bursal lymphocytes and the DT40 cell line to verify the quality and completeness of the annotated transcripts. 53.6% of the more than 38,000 unique SAGE tags (unitags) match to full length bursal cDNAs, the Ensembl transcript build or the genome sequence. The majority of all matching unitags show single matches to the genome, but no matches to the genome derived Ensembl transcript build. Nevertheless, most of these tags map close to the 3' boundaries of annotated Ensembl transcripts. Conclusions: These results suggests that rather few genes are missing in the current Ensembl chicken transcript build, but that the 3' ends of many transcripts may not have been accurately predicted. The tags with no match in the transcript sequences can now be used to improve gene predictions, pinpoint the genomic location of entirely missed transcripts and optimize the accuracy of gene finder software.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。