The N-terminal β-sheet of the hyperthermophilic endoglucanase from Pyrococcus horikoshii is critical for thermostability

堀越火球菌超嗜热内切葡聚糖酶的 N 端 β 片层对于热稳定性至关重要

阅读:8
作者:Trent C Yang, Steve Legault, Emery A Kayiranga, Jyothi Kumaran, Kazuhiko Ishikawa, Wing L Sung

Abstract

The β-1,4-endoglucanase (EC 3.2.1.4) from the hyperthermophilic archaeon Pyrococcus horikoshii (EGPh) has strong hydrolyzing activity toward crystalline cellulose. When EGPh is used in combination with β-glucosidase (EC 3.2.1.21), cellulose is completely hydrolyzed to glucose at high temperature, suggesting great potential for EGPh in bioethanol industrial applications. The crystal structure of EGPh shows a triosephosphate isomerase (TIM) (β/α)(8)-barrel fold with an N-terminal antiparallel β-sheet at the opposite side of the active site and a very short C-terminal sequence outside of the barrel structure. We describe here the function of the peripheral sequences outside of the TIM barrel core structure. Sequential deletions were performed from both N and C termini. The activity, thermostability, and pH stability of the expressed mutants were assessed and compared to the wild-type EGPh enzyme. Our results demonstrate that the TIM barrel core is essential for enzyme activity and that the N-terminal β-sheet is critical for enzyme thermostability. Bioinformatics analyses identified potential key residues which may contribute to enzyme hyperthermostability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。