Induction of an immune response by a nonreplicating adenoviruses-based formulation versus a commercial pseudo-SARS-CoV-2 vaccine

非复制型腺病毒制剂与市售伪 SARS-CoV-2 疫苗相比诱导免疫反应

阅读:7
作者:Joanna Baran, Łukasz Kuryk, Mariangela Garofalo, Katarzyna Pancer, Magdalena Wieczorek, Michalina Kazek, Monika Staniszewska

Abstract

Screening for effective vaccines requires broad studies on their immunogenicity in vitro and ex vivo . We used a PBMC-based system to assess changes in CD4+ T cells, CD8+ T cells, and CD19+ B cells upon stimulation with different combinations of antigens and adjuvants. We studied the activation mechanism using flow cytometry and two different adenoviral adjuvants characterized by the presence or absence of costimulatory ligands for the ICOS and CD40 receptors. Our studies identified the cellular targets and molecular mechanisms driving ongoing switched-antibody diversification. Class-switched memory B cells were the main precursor cells (95.03% ± 0.38 vs. mock 82.33% ± 0.45, P < 0.05) after treatment with the immunogenic formula: adenovirus armed (MIX1) or not (MIX2) with the ICOS and CD40 ligand, the recombinant receptor binding domain (rRBD), and Lentifect™ SARS-CoV-2 spike-pseudotyped lentivirus (GeneCopoeia, USA). Bcell class-switching towards the IgG+IgM+- positive phenotypes was noted (~50-fold increase vs. mock, P < 0.05). A significant increase was observed in the CD8+TEM population of the MIX1 (~2-fold, P < 0.05) and MIX2 (~4.7-fold, P < 0.05) treated samples. CD8+TEMRA increased when PBMCs were treated with MIX2 (9.63% ± 0.90, P < 0.05) vs. mock (2.63% ± 1.96). Class-switched memory B cells were the dominant antigen-specific cells in primary reactions. We indicated a correlation between the protection offered by vaccine regimens and their ability to induce high frequencies of multifunctional T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。