Structure and Function of Four Classes of the 4Fe-4S Protein, IspH

4Fe-4S 蛋白 IspH 的四类结构和功能

阅读:6
作者:Guodong Rao, Eric Oldfield

Abstract

IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate reductase, is an essential enzyme in isoprenoid biosynthesis and an important drug/herbicide target. Using X-ray crystallographic, bioinformatics, mutagenesis/kinetics/stability, and electron paramagnetic resonance (EPR) results, we show that organisms from different environments ultilize one of four main IspH classes. The classes are based on the arrangement of the aromatic residues near the 4Fe-4S cluster and the presence or absence of N- and C-terminal extensions. Class A enzymes are found primarily in anaerobic and microaerophilic bacteria. Class B enzymes are found in aerobic bacteria. Class C enzymes are found in cyanobacteria and plants. Class D enzymes are found in apicomplexan parasites. Using mutagenesis, we show that the cluster-associated aromatic groups in class A and class B IspHs enhance cluster oxidative stability. Y198A, F302A, and a C-terminal truncation mutant of the class B (Escherichia coli) IspH have catalytic activity lower than that of the wild-type protein when using methyl viologen as the electron donor, but higher activity with dithionite as the electron donor, due to ready access of the small reductant to the cluster, consistent with their increased oxygen and H2O2 sensitivity. F302A has the largest effect on the reaction rates, and EPR studies indicate this residue affects Fe-S cluster structure. Similar effects on cluster stability are seen with class A (F14A and Y98A) mutants; however, effects on ET rates are smaller, and there are no differences between the EPR spectra of mutant and wild-type proteins. Overall, the results are of general interest because they show, for the first time, that there are multiple IspH classes that have evolved to allow organisms to survive in diverse oxidative-stress environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。