Chrysanthemum × grandiflora leaf and root transcript profiling in response to salinity stress

菊花叶和根转录本分析响应盐分胁迫

阅读:5
作者:He Liu, Yu Liu, Ning Xu, Ying Sun, Qiang Li, Liran Yue, Yunwei Zhou, Miao He

Abstract

As high soil salinity threatens the growth and development of plants, understanding the mechanism of plants' salt tolerance is critical. The Chrysanthemum × grandiflora is a newly developed species with a strong salt resistance that possesses multiple genes controlling its quantitative salt resistance. Because of this multigene control, we chose to investigate the plant stress genes overall responses at the transcriptome level. C. grandiflora were treated with a 200 mM NaCl solution for 12 h to study its effect on the roots and leaves via Illumina RNA sequencing. PAL, CYP73A, and 4CL in the phenylpropanoid biosynthesis pathway were upregulated in roots and leaves. In the salicylic acid signal transduction pathway, TGA7 was upregulated in the roots and leaves, while in the jasmonic acid signal transduction pathway, TIFY9 was upregulated in the roots and leaves. In the ion transporter gene, we identified HKT1 that showed identical expression patterns in the roots and leaves. The impact of NaCl imposition for 12 h was largely due to osmotic effect of salinity on C. grandiflora, and most likely the transcript abundance changes in this study were due to the osmotic effect. In order to verify the accuracy of the Illumina sequencing data, we selected 16 DEGs for transcription polymerase chain reaction (qRT-PCR) analysis. qRT-PCR and transcriptome sequencing analysis revealed that the transcriptome sequencing results were reliable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。