Conclusion
The current study's findings were validated by in-silico and cellular analyses, suggesting that pheophorbide A may regulate GLUT1 and might be regarded as a potential lead for boosting the GSIS pathway, thus maintaining glucose homeostasis.
Methods
In-silico and in-vitro investigations were used to explore the effect of pheophorbide A on class I glucose transporters (GLUTs). In-silico studies include - Molecular docking studies and stability assessment using GROMACS. In-vitro studies include - MTT assay, Glucose uptake assay, Live-cell imaging and tracking of GLUTs in presence of Pheophorbide A compared to control.
Results
Molecular docking studies revealed better binding affinity of pheophorbide A with GLUT4 (-11.2 Kcal/mol) and GLUT1 (-10.7 Kcal/mol) when compared with metformin (-5.0 Kcal/mol and -4.9 Kcal/mol, respectively). Glucose levels are largely regulated by GLUTs where GLUT1 is one of the transporters that is ubiquitously present in human β cells. Thus, we confirmed the stability of the complex, that is, pheophorbide A-GLUT1 using GROMACS for 100 ns. We further assessed its effect on a pancreatic β cell line (INS-1) for its viability using an MTT assay. Pheophorbide A (0.1-1 µM) showed a dose-dependent response on cell viability and was comparable to standard metformin. To assess how pheophorbide A mechanistically acts on GLUT1 in pancreatic β cell, we transfected INS-1 cells with GLUT1-enhanced green fluorescent protein and checked how the treatment of pheophorbide A (0.50 µM) modulates GLUT1 trafficking using live-cell imaging. We observed a significant increase in GLUT1 density when treated with pheophorbide A (0.442 ± 0.01 µm-2) at 20 mM glucose concentration when compared to GLUT1 control (0.234 ± 0.01 µm-2) and metformin (0.296 ± 0.02 µm-2). The average speed and distance travelled by GLUT1 puncta were observed to decrease when treated with pheophorbide A. The present study also demonstrated the potential of pheophorbide A to enhance glucose uptake in β cells.
