High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome

高丰度的青枯病菌改变了番茄根际微生物组和代谢组

阅读:12
作者:Tao Wen, Mengli Zhao, Ting Liu, Qiwei Huang, Jun Yuan, Qirong Shen

Background

Rhizosphere microbiome is dynamic and influenced by environment factors surrounded including pathogen invasion. We studied the effects of Ralstonia solanacearum pathogen abundance on rhizosphere microbiome and metabolome by using high throughput sequencing and GC-MS technology.

Conclusions

The dissimilar metabolomes in two rhizosphere soils likely explained the difference of bacterial communities with Mantel test. Bacillus and Chitinophaga as well as sugar compounds negatively correlated with high abundance of pathogen indicated their potential biocontrol ability.

Results

There is significant difference between two rhizosphere bacterial communities of higher or lower pathogen abundance, and this difference of microbiomes was significant even ignoring the existence of pathogen. Higher pathogen abundance decreased the alpha diversity of rhizosphere bacterial community as well as connections in co-occurrence networks. Several bacterial groups such as Bacillus and Chitinophaga were negatively related to the pathogen abundance. The GC-MS analysis revealed significantly different metabolomes in two groups of rhizosphere soils, i.e., the rhizosphere soil of lower harbored more sugars such as fructose, sucrose and melibiose than that in high pathogen abundance. Conclusions: The dissimilar metabolomes in two rhizosphere soils likely explained the difference of bacterial communities with Mantel test. Bacillus and Chitinophaga as well as sugar compounds negatively correlated with high abundance of pathogen indicated their potential biocontrol ability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。