Enhanced gas selectivity induced by surface active oxygen in SnO/SnO2 heterojunction structures at different temperatures

不同温度下 SnO/SnO2 异质结结构中表面活性氧诱导的气体选择性增强

阅读:12
作者:Guilin Yin, Jianwu Sun, Fang Zhang, Weiwei Yu, Fang Peng, Yan Sun, Xin Chen, Lei Xu, Jing Lu, Chao Luo, Meiying Ge, Dannong He

Abstract

The development of heterojunction structures has been considered as an important step for sensing materials. In this report, 3D hierarchical SnO-SnO2 heterojunction structures were synthesized and developed via simple one-pot hydrothermal synthesis without any extra processes. The prepared 3D samples exhibit high sensitivity, benefiting from the synergistic effects of SnO and SnO2. Interestingly, SnO-SnO2 hybrid structures exhibited distinctly different sensitivities at 180 and 280 °C, and the sensitivity can achieve values of 47.69 and 41.56 toward ethanol and acetone, respectively, at concentrations of 100 ppm. A mechanistic analysis of the sensitivity and concentration-dependence revealed that the oxygen species on the surface were O- and O2- at different temperatures. Therefore, the temperature selectivity of the sample may be due to the different activities of the active oxygen species. Moreover, the composition also shows excellent stability at operating temperatures. The high sensing sensitivity and selectivity is promising for practical VOC gas detection; this also offers a new perspective for the design of multifunctional sensing materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。