Effects of mRNA secondary structure on the expression of HEV ORF2 proteins in Escherichia coli

mRNA二级结构对大肠杆菌中HEV ORF2蛋白表达的影响

阅读:5
作者:Nouredine Behloul, Wenjuan Wei, Sarra Baha, Zhenzhen Liu, Jiyue Wen, Jihong Meng

Background

Viral protein expression in Escherichia coli (E. coli) is a powerful tool for structural/functional studies as well as for vaccine and diagnostics development. However, numerous factors such as codon bias, mRNA secondary structure and nucleotides distribution, have been indentified to hamper this heterologous expression.

Conclusions

This study demonstrates that the mRNA secondary structure near the start codon is the key limiting factor for an efficient expression of HEV ORF2 proteins in E. coli. It describes also a simple and effective strategy for the production of viral proteins of different lengths for immunogenicity/antigenicity comparative studies during vaccine and diagnostics development.

Results

In this study, we combined computational and biochemical methods to analyze the influence of these factors on the expression of different segments of hepatitis E virus (HEV) ORF 2 protein and hepatitis B virus surface antigen (HBsAg). Three out of five HEV antigens were expressed while all three HBsAg fragments were not. The computational analysis revealed a significant difference in nucleotide distribution between expressed and non-expressed genes; and all these non-expressing constructs shared similar stable 5'-end mRNA secondary structures that affected the accessibility of both Shine-Dalgarno (SD) sequence and start codon AUG. By modifying the 5'-end of HEV and HBV non-expressed genes, there was a significant increase in the total free energy of the mRNA secondary structures that permitted the exposure of the SD sequence and the start codon, which in turn, led to the successful expression of these genes in E. coli. Conclusions: This study demonstrates that the mRNA secondary structure near the start codon is the key limiting factor for an efficient expression of HEV ORF2 proteins in E. coli. It describes also a simple and effective strategy for the production of viral proteins of different lengths for immunogenicity/antigenicity comparative studies during vaccine and diagnostics development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。