Allogeneic murine mesenchymal stem cells: migration to inflamed joints in vivo and amelioration of collagen induced arthritis when transduced to express CTLA4Ig

同种异体鼠间充质干细胞:在体内迁移至发炎的关节,并通过转导表达 CTLA4Ig 来改善胶原诱导的关节炎

阅读:6
作者:Catherine Sullivan, Frank Barry, Thomas Ritter, Cathal O'Flatharta, Linda Howard, Georgina Shaw, Ignacio Anegon, Mary Murphy

Abstract

Despite the immunosuppressive, homing, and regenerative capabilities of mesenchymal stem cells (MSCs), their ability to migrate to arthritic joints and influence the course of arthritis in vivo remains poorly understood. The objective of this study was to determine if allogeneic MSCs migrate to inflamed joints in vivo and to determine if MSCs expressing the costimulation blocker cytotoxic T lymphocyte associated antigen-4 coupled to immunoglobulin-G (CTLA4Ig) could be used to ameliorate collagen induced arthritis (CIA). The migration of systemically delivered inbred mouse strain (FVB) MSCs to migrate to inflamed joints in CIA was studied using real-time quantitative polymerase chain reaction. Furthermore, the effect of BALB/c MSCs modified with an adenoviral vector to express CTLA4Ig, on T cell function in vitro and on CIA in vivo was assessed. After systemic delivery of FVB MSCs, eGFP DNA was detectable in the joints of mice with CIA confirming that some MSCs had reached to inflamed joints. BALB/c MSCs suppressed the secretion of both TNFα and IFNγ, and reduced the ratio of Th1:Th2 cytokine expression, by DBA/1 T cells in vitro irrespective of viral modification. The expression of CTLA4Ig did not augment this effect. Despite a worsening of disease scores after infusion of BALB/c MSCs in vivo, BALB/c MSCs expressing CTLA4Ig significantly delayed the onset of inflammatory arthritis in CIA. These data demonstrate that allogeneic MSCs can migrate to the inflamed joints of CIA in vivo and that genetically modified allogeneic MSCs may be considered for development of gene therapy strategies for inflammatory arthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。