Characterization of the Liriodendron chinense Pentatricopeptide Repeat (PPR) Gene Family and Its Role in Osmotic Stress Response

马蔺木五肽重复序列 (PPR) 基因家族的表征及其在渗透胁迫反应中的作用

阅读:8
作者:Xiaoxiao Ma, Dandan Wang, Guoxia Xue, Xueyan Zheng, Ye Lu, Jisen Shi, Zhaodong Hao, Jinhui Chen

Abstract

The Pentatricopeptide repeat (PPR) superfamily is a large gene family in plants that regulates organelle RNA metabolism, which is important for plant growth and development. However, a genome-wide analysis of the PPR gene family and its response to abiotic stress has not been reported for the relict woody plant Liriodendron chinense. In this paper, we identified 650 PPR genes from the L. chinense genome. A phylogenetic analysis showed that the LcPPR genes could roughly be divided into the P and PLS subfamilies. We found that 598 LcPPR genes were widely distributed across 19 chromosomes. An intraspecies synteny analysis indicated that duplicated genes from segmental duplication contributed to the expansion of the LcPPR gene family in the L. chinense genome. In addition, we verified the relative expression of Lchi03277, Lchi06624, Lchi18566, and Lchi23489 in the roots, stems, and leaves and found that all four genes had the highest expression in the leaves. By simulating a drought treatment and quantitative reverse transcription PCR (qRT-PCR) analysis, we confirmed the drought-responsive transcriptional changes in four LcPPR genes, two of which responded to drought stress independent of endogenous ABA biosynthesis. Thus, our study provides a comprehensive analysis of the L. chinense PPR gene family. It contributes to research into their roles in this valuable tree species' growth, development, and stress resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。