The evolution of human anti-double-stranded DNA autoantibodies

人类抗双链 DNA 自身抗体的进化

阅读:6
作者:Ute Wellmann, Miriam Letz, Martin Herrmann, Sieglinde Angermüller, Joachim R Kalden, Thomas H Winkler

Abstract

It has been proposed that the anti-double-stranded DNA (dsDNA) response in patients with systemic lupus erythematosus (SLE) is antigen driven and that DNA or nucleosomes select anti-DNA reactive, somatically mutated B cells. We have used site-directed mutagenesis to systematically revert the somatic mutations of two human anti-dsDNA antibodies from SLE patients to analyze the resulting changes in DNA binding as well as binding to other autoantigens. Our data demonstrate that high-affinity binding to dsDNA and nucleosomes is acquired by somatic replacement mutations in a stepwise manner. Reactivity to surface structures of apoptotic cells is acquired by the same somatic mutations that generate high-affinity dsDNA binding. Importantly, revertant antibodies with germ-line V regions did not show any measurable DNA reactivity. We propose that anti-DNA autoantibodies are generated from nonautoreactive B cells during a normal immune response. B cells may acquire autoreactivity de novo during the process of somatic hypermutation. Nucleosomes, if available in lupus patients because of defects in clearing of apoptotic debris, might subsequently positively select high affinity anti-DNA B cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。