Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes

Peptimapper:用于真核基因组专家注释的蛋白质组学工作流程

阅读:18
作者:Laetitia Guillot, Ludovic Delage, Alain Viari, Yves Vandenbrouck, Emmanuelle Com, Andrés Ritter, Régis Lavigne, Dominique Marie, Pierre Peterlongo, Philippe Potin, Charles Pineau

Background

Accurate structural annotation of genomes is still a challenge, despite the progress made over the past decade. The prediction of gene structure remains difficult, especially for eukaryotic species, and is often erroneous and incomplete. We used a proteogenomics strategy, taking advantage of the combination of proteomics datasets and bioinformatics tools, to identify novel protein coding-genes and splice isoforms, assign correct start sites, and validate predicted exons and genes.

Conclusions

Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any organism and is distributed through a Docker image available on two public bioinformatics docker repositories: Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-computer scientists at https://galaxy.protim.eu . Data are available via ProteomeXchange under identifier PXD010618.

Results

Our proteogenomics workflow, Peptimapper, was applied to the genome annotation of Ectocarpus sp., a key reference genome for both the brown algal lineage and stramenopiles. We generated proteomics data from various life cycle stages of Ectocarpus sp. strains and sub-cellular fractions using a shotgun approach. First, we directly generated peptide sequence tags (PSTs) from the proteomics data. Second, we mapped PSTs onto the translated genomic sequence. Closely located hits (i.e., PSTs locations on the genome) were then clustered to detect potential coding regions based on parameters optimized for the organism. Third, we evaluated each cluster and compared it to gene predictions from existing conventional genome annotation approaches. Finally, we integrated cluster locations into GFF files to use a genome viewer. We identified two potential novel genes, a ribosomal protein L22 and an aryl sulfotransferase and corrected the gene structure of a dihydrolipoamide acetyltransferase. We experimentally validated the results by RT-PCR and using transcriptomics data. Conclusions: Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any organism and is distributed through a Docker image available on two public bioinformatics docker repositories: Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-computer scientists at https://galaxy.protim.eu . Data are available via ProteomeXchange under identifier PXD010618.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。