Stereocomplexation Reinforced High Strength Poly(L-lactide)/Nanohydroxyapatite Composites for Potential Bone Repair Applications

立体复合增强高强度聚(L-丙交酯)/纳米羟基磷灰石复合材料可用于潜在的骨修复应用

阅读:6
作者:Naishun Guo, Mengen Zhao, Sijing Li, Jiahui Hao, Zhaoying Wu, Chao Zhang

Abstract

Composite materials composed of polylactide (PLA) and nano-hydroxyapatite (n-HA) have been recognized as excellent candidate material in bone repai The difference in hydrophilicity/hydrophobicity and poor interfacial compatibility between n-HA filler and PLA matrix leads to non-uniform dispersion of n-HA in PLA matrix and consequent poor reinforcement effect. In this study, an HA/PLA nanocomposite was designed based on the surface modification of n-HA with poly(D-lactide) (PDLA), which not only can improve the dispersion of n-HA in the poly(L-lactide) (PLLA) matrix but also could form a stereocomplex crystal with the matrix PLLA at the interface and ultimately lead to greatly enhanced mechanical performance The n-HA/PLA composites were characterized by means of scanning electron microscopy, Fourier transform infrared spectroscopy, X-Ray diffraction, thermal gravity analysis, differential scanning calorimetry, and a mechanical test; in vitro cytotoxicity of the composite material as well as its efficacy in inducing osteogenic differentiation of rat bone marrow stromal cells (rMSCs) were also evaluated. Compared with those of neat PLLA, the tensile strength, Young's modulus, interfacial shear strength, elongation at break and crystallinity of the composites increased by 34%, 53%, 26%, 70%, and 17%, respectively. The adhesion and proliferation as well as the osteogenic differentiation of rMSCs on HA/PLA composites were clearly evidenced. Therefore, the HA/PLA composites have great potential for bone repai.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。