RNA language models predict mutations that improve RNA function

RNA语言模型预测改善RNA功能的突变

阅读:6
作者:Yekaterina Shulgina, Marena I Trinidad, Conner J Langeberg, Hunter Nisonoff, Seyone Chithrananda, Petr Skopintsev, Amos J Nissley, Jaymin Patel, Ron S Boger, Honglue Shi, Peter H Yoon, Erin E Doherty, Tara Pande, Aditya M Iyer, Jennifer A Doudna, Jamie H D Cate0

Abstract

Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. While advances in deep learning enable the prediction of accurate protein structural models, RNA structure prediction is not possible at present due to a lack of abundant high-quality reference data1. Furthermore, available sequence data are generally not associated with organismal phenotypes that could inform RNA function2-4. We created GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB)5. GARNET links RNA sequences derived from GTDB genomes to experimental and predicted optimal growth temperatures of GTDB reference organisms. This enables construction of deep and diverse RNA sequence alignments to be used for machine learning. Using GARNET, we define the minimal requirements for a sequence- and structure-aware RNA generative model. We also develop a GPT-like language model for RNA in which overlapping triplet tokenization provides optimal encoding. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identified mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。