Solvothermal water-diethylene glycol synthesis of LiCoPO4 and effects of surface treatments on lithium battery performance

溶剂热水-二乙二醇合成LiCoPO4及表面处理对锂电池性能的影响

阅读:12
作者:Min Zhang, Nuria Garcia-Araez, Andrew L Hector, John R Owen, Robert G Palgrave, Michael G Palmer, Samantha Soulé

Abstract

Olivine-structured LiCoPO4 is prepared via a facile solvothermal synthesis, using various ratios of water/diethylene glycol co-solvent, followed by thermal treatment under Ar, air, 5%H2/N2 or NH3. The diethylene glycol plays an important role in tailoring the particle size of LiCoPO4. It is found that using a ratio of water/diethylene glycol of 1 : 6 (v/v), LiCoPO4 is obtained with a homogenous particle size of ∼150 nm. The bare LiCoPO4 prepared after heating in Ar exhibits high initial discharge capacity of 147 mA h g-1 at 0.1C with capacity retention of 70% after 40 cycles. This is attributed to the enhanced electronic conductivity of LiCoPO4 due to the presence of Co2P after firing under Ar. The effects of carbon, TiN and RuO2 coating are also examined. Contrary to other studies, it is found that the solvothermally synthesised LiCoPO4 samples produced here do not require conductive coatings to achieve good performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。