Efficacy of recombinant Bacillus Calmette-Guérin containing dltA in in vivo three-dimensional bio-printed bladder cancer-on-a-chip and ex vivo orthotopic mouse model

含有 dltA 的重组卡介苗在体内三维生物打印膀胱癌芯片和离体原位小鼠模型中的功效

阅读:7
作者:Joongwon Choi #, Tae Young Jung #, Jung Hoon Kim, Sejung Maeng, Su Jeong Kang, Mirinae Kim, Young Wook Choi, Se Young Choi, Sung-Hwan Kim, In Ho Chang

Conclusions

In conclusion, rBCG-dltA has the potential to have better anti-tumor activity and immunomodulatory effects than BCG. Furthermore, high-throughput BCOCs have potential to reflect the bladder cancer microenvironment.

Methods

We fabricated high-throughput BCOC with microfluidic systems, enabling efficient drug screening. The efficacy of rBCG-dltA was evaluated using BCOC by the cell viability assay, monocyte migration assay, and measuring cytokine levels. The anti-tumor effect was compared using the orthotopic bladder cancer mouse model.

Purpose

We investigated the efficacy and optimal dosage of recombinant Bacillus Calmette-Guérin-dltA (rBCG-dltA) in a high-throughput 3D bio-printed bladder cancer-on-a-chip (BCOC) and orthotopic bladder cancer mouse model. Materials and

Results

The cell proliferation rates of T24 and 253J bladder cancer cell lines (mean±standard error) were measured at three days after treatment. In T24 cell line, there was significantly decreased T24 cells compared to control at rBCG 1 multiplicity of infection (MOI) and 10 MOI (30 MOI: 63.1±6.4, 10 MOI: 47.4±5.2, 1 MOI: 50.5±7.5, control: 100.0±14.5, p<0.05). In 253J cell line, a statistically significant decrease in 253J cell count compared to control and mock BCG 30 MOI (30 MOI: 11.2±1.3, 10 MOI: 22.5±2.3, 1 MOI: 39.4±4.7, Mock: 54.9±10.8, control: 100.0±5.6, p<0.05). The migration rates of THP-1 cells showed increased patterns after rBCG-dltA treatment in BCOC. The concentration of tumor necrosis factor-α and interleukin-6 after rBCG-dltA 30 MOI treatment was higher than control in T24 and 253J cell line. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。