Morphological entropy encodes cellular migration strategies on multiple length scales

形态熵在多个长度尺度上编码细胞迁移策略

阅读:4
作者:Yanping Liu, Yang Jiao, Qihui Fan, Xinwei Li, Zhichao Liu, Dui Qin, Jun Hu, Liyu Liu, Jianwei Shuai, Zhangyong Li4

Abstract

Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。