Bifidobacterium alleviate metabolic disorders via converting methionine to 5'-methylthioadenosine

双歧杆菌通过将蛋氨酸转化为5'-甲硫腺苷来缓解代谢紊乱

阅读:6
作者:Qiang Lyu, Rou-An Chen, Hsiao-Li Chuang, Hsin-Bai Zou, Lihong Liu, Li-Kang Sung, Po-Yu Liu, Hsin-Yi Wu, Hsin-Yuan Chang, Wan-Ju Cheng, Wei-Kai Wu, Ming-Shiang Wu, Cheng-Chih Hsu

Abstract

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。