Effect of STAT3 decoy oligodeoxynucleotides mediated by ultrasound-targeted microbubbles combined with ultrasound on the growth of squamous cell carcinoma of the esophagus

超声靶向微泡介导STAT3诱饵寡脱氧核苷酸联合超声对食管鳞状细胞癌生长的影响

阅读:7
作者:Yan Zhang, Meiwu Zhang, Xiaoxiang Fan, Dafeng Mao, Shuyi Lv, Ping Chen

Abstract

Effect of STAT3 decoy oligodeoxynucleotides (ODN) transduced by ultrasound microbubbles combined with ultrasound on the growth of esophageal squamous cell carcinoma and its mechanism were analyzed. EC9706 cells were cultured in vitro and divided into four groups: group E (ultrasound microbubble + ultrasound irradiation), group P (liposome + ultrasound irradiation), group C (ultrasound), and group CC (ultrasound microbubbles). Mutant ODNs were used in groups E and P and the control group was group EC and PC, respectively. Immunofluorescence assay and flow cytometry were used to detect the transfection efficiency of each group. MTT colorimetric assay was performed to analyze the inhibition rate in each group. The effect of STAT3 decoy ODN on the proliferation of esophageal squamous carcinoma cells was calculated. Revese transcription-quantitative PCR (RT-qPCR) and western blotting were performed to detect the expression of the STAT signaling pathway downstream of gene expression levels. The model of subcutaneous transplantation of nude mice was used to show the effect of different transfections and STAT3 decoy ODN on the weight and volume of the transplanted tumor in mice. The cell inhibition rate was higher in group E than in groups P (F=8.382, P<0.001) and CC (F=6.469, P<0.001). Compared with groups EC, PC and C, respectively, the mRNA expression of STAT3, bcl-xL and Cyclin D1 decreased in groups E, P and CC (F=5.328, P<0.001). The weight and volume of nude mice in groups E, P and CC exhibited an inhibitory effect on the weight and volume of nude mice. Ultrasound irradiation combined with ultrasound microbubbles is an effective transfection method. The transfection of STAT3 decoy ODN can significantly inhibit the activity of esophageal squamous cell carcinoma cells and enhance apoptosis of cells, which has potential clinical value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。