Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1

长链非编码RNA FTH1P3通过miR-206/ABCB1激活乳腺癌紫杉醇耐药性

阅读:3
作者:Ruoming Wang, Tengteng Zhang, Zhen Yang, Chunxia Jiang, Jingjing Seng

Abstract

Emerging evidence has indicated the important function of long non-coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up-regulated in paclitaxel-resistant breast cancer tissue and cells (MCF-7/PTX and MDA-MB-231/PTX cells) compared with paclitaxel-sensitive tissue and parental cell lines (MCF-7, MDA-MB-231). Gain- and loss-of-function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3-enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel-resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR-206, acting as a miRNA "sponge." In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR-206/ABCB1, providing a novel insight for the breast cancer chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。