Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production

对非常规酵母 Pichia anomala 进行基因组改组以提高糖醇产量

阅读:6
作者:Guoqiang Zhang, Yuping Lin, Xianni Qi, Lixian Wang, Peng He, Qinhong Wang, Yanhe Ma

Background

Sugar alcohols have been widely applied in the fields of food and medicine owing to their unique properties. Compared to chemical production, microbial production of sugar alcohols has become attractive because of its environmentally friendly and sustainable characteristics. Our previous study identified the nonconventional yeast Pichia anomala TIB-x229 as a potential producer of sugar alcohols from glucose. To further improve strain performance, we combined genome shuffling with optimized high throughput screening

Conclusion

An efficient genome shuffling procedure was developed and applied to enhance the sugar alcohol production of the nonconventional yeast P. anomala. Our results provide a general platform for strain improvement of polyol-producing microorganisms or nonconventional microorganisms in the future.

Results

To accelerate strain improvement, a practical genome shuffling procedure was developed and successfully applied in the nonconventional yeast P. anomala to increase sugar alcohol production. Through two rounds of genome shuffling, an improved P. anomala isolate GS2-3 could produce 47.1 g/L total sugar alcohols from 100 g/L glucose, which was 32.3% higher than the original strain. In this process, a simple and accurate colorimetric assay was optimized and used for high throughput screening of sugar alcohol-producing strains. Moreover, a fluorescence-activated cell sorting method was developed to efficiently screen protoplast fusions for genome shuffling of nonconventional yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。