Dendritic cell-derived lncRNAs in patients with acute coronary syndrome

急性冠状动脉综合征患者的树突状细胞衍生 lncRNA

阅读:6
作者:Zhenglong Wang, K E Changhao, Yuheng Chen, Yongchao Zhao, Yuanjie He, Xiao Liang, Qingxian Tu, Min Xu, Fujia Guo, Junbo Ge, Bei Shi

Abstract

Long non-coding RNAs (lncRNAs) and dendritic cells (DC) play crucial roles in the development of acute coronary syndrome (ACS); however, the mechanisms remain unclear. To investigate this, we analysed the differentially expressed lncRNAs in monocyte-derived DCs (moDCs) from patients with ACS. Peripheral blood mononuclear cells were transformed into moDCs. Cellular morphology and expression levels of moDC-specific markers (CD80, CD86, CD11c, CD14 and HLA-DR) were analysed using electron microscopy (EM) and flow cytometry (FCM), respectively. Differentially expressed lncRNAs and their functions were predicted using gene sequencing, gene ontology and the Kyoto Encyclopedia of Genes and Genomes. The expression levels of markers, signalling pathway molecules (p-PI3K and p-AKT), inflammatory cytokines (IL-6 and IL-12p70) and target gene (C-C motif chemokine ligand (CCL) 15 and CCL14) were analysed by overexpression or silencing of candidate lncRNAs. EM revealed the cells to be suspended in dendritic pseudopodia. CD11c and HLA-DR were upregulated, while CD80 and CD86 were downregulated. Comparison between the UA versus ST group showed the highest number of differentially expressed lncRNAs (n = 113), followed by UA versus NST (n = 115), CON versus NST (n = 49) and CON versus ST (n = 35); however, the number was low for CON versus UA and ST versus NST groups. moDC-specific marker expression, signalling pathway molecules, inflammatory cytokines and CCL14 were upregulated following lentiviral overexpression of smart silencer-CCL15-CCL14; however, expression levels decreased following transfection with siRNA. The morphology, function and lncRNA expression of moDCs differ depending on the type of ACS. The differentially expressed lncRNAs, particularly CCL15-CCL14, regulate the function of moDCs. Thus, our study provides new insights regarding the role of lncRNAs in ACS and indicates the potential use of CCL15-CCL14 as a novel diagnostic marker and therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。