Airway and lung pathology due to mucosal surface dehydration in {beta}-epithelial Na+ channel-overexpressing mice: role of TNF-{alpha} and IL-4R{alpha} signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment

β-上皮 Na+ 通道过度表达小鼠粘膜表面脱水导致的气道和肺部病理:TNF-α 和 IL-4Rα 信号传导的作用、新生儿发育的影响以及糖皮质激素治疗的有限疗效

阅读:8
作者:Alessandra Livraghi, Barbara R Grubb, Elizabeth J Hudson, Kristen J Wilkinson, John K Sheehan, Marcus A Mall, Wanda K O'Neal, Richard C Boucher, Scott H Randell

Abstract

Overexpression of the epithelial Na(+) channel beta subunit (Scnn1b gene, betaENaC protein) in transgenic (Tg) mouse airways dehydrates mucosal surfaces, producing mucus obstruction, inflammation, and neonatal mortality. Airway inflammation includes macrophage activation, neutrophil and eosinophil recruitment, and elevated KC, TNF-alpha, and chitinase levels. These changes recapitulate aspects of complex human obstructive airway diseases, but their molecular mechanisms are poorly understood. We used genetic and pharmacologic approaches to identify pathways relevant to the development of Scnn1b-Tg mouse lung pathology. Genetic deletion of TNF-alpha or its receptor, TNFR1, had no measurable effect on the phenotype. Deletion of IL-4Ralpha abolished transient mucous secretory cell (MuSC) abundance and eosinophilia normally observed in neonatal wild-type mice. Similarly, IL-4Ralpha deficiency decreased MuSC and eosinophils in neonatal Scnn1b-Tg mice, which correlated with improved neonatal survival. However, chronic lung pathology in adult Scnn1b-Tg mice was not affected by IL-4Ralpha status. Prednisolone treatment ablated eosinophilia and MuSC in adult Scnn1b-Tg mice, but did not decrease mucus plugging or neutrophilia. These studies demonstrate that: 1) normal neonatal mouse airway development entails an IL-4Ralpha-dependent, transient abundance of MuSC and eosinophils; 2) absence of IL-4Ralpha improved neonatal survival of Scnn1b-Tg mice, likely reflecting decreased formation of asphyxiating mucus plugs; and 3) in Scnn1b-Tg mice, neutrophilia, mucus obstruction, and airspace enlargement are IL-4Ralpha- and TNF-alpha-independent, and only MuSC and eosinophilia are sensitive to glucocorticoids. Thus, manipulation of multiple pathways will likely be required to treat the complex pathogenesis caused by airway surface dehydration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。