Immunotherapeutic effects of recombinant Bacillus Calmette-Guérin containing sic gene in ex vivo and in vivo bladder cancer models

含sic基因重组卡介苗对膀胱癌体内外模型的免疫治疗作用

阅读:7
作者:Jung Hoon Kim, Joongwon Choi, Mirinae Kim, Su Jeong Kang, Young Wook Choi, Se Young Choi, Sung-Hwan Kim, In Ho Chang

Conclusions

We concluded that rBCG-sic is a useful tool for overcoming BCG unresponsiveness in non-muscle invasive bladder cancer. Additionally, high-throughput BCOC with a microfluidic system can successfully reflect the bladder cancer microenvironment.

Methods

We fabricated a high-throughput 3D-bioprinted bladder cancer-on-a-chip (BCOC) and used it to evaluate the effectiveness of the rBCG-sic in terms of cell viability, cell migration, and cytokine concentrations. Using an orthotopic mouse model, we evaluated its anticancer effect and toxicity via bioluminescence imaging.

Purpose

The recombinant Bacillus Calmette-Guérin (BCG) containing the streptococcal inhibitor of the complement gene (rBCG-sic) may be more resistant to antimicrobial peptides and improve internalization; therefore, it can enhance the immunotherapeutic effect of the BCG. Here we determined the optimal dose of rBCG-sic and compared its effectiveness with that of BCG. Materials and

Results

T24 cell viability was decreased after treatment with rBCG-sic 30 multiplicities of infection (MOI) versus the same dosage of mock BCG (42.8%±6.4% vs. 75.7%±6.6%, p<0.05). THP-1 cell migration was positively correlated with rBCG-sic concentration (2.42-fold at 30MOI, p<0.01). The interleukin-6 concentration of rBCG-sic 30MOI was significantly higher than that of mock BCG 30MOI (11.2±1.3 pg/mL vs. 6.7±0.6 pg/mL, p<0.05). In the orthotopic bladder cancer mouse model, lower tumor volume was observed in the rBCG-sic 30MOI group than in the BCG 30MOI group after 10 days of treatment (p<0.05). Conclusions: We concluded that rBCG-sic is a useful tool for overcoming BCG unresponsiveness in non-muscle invasive bladder cancer. Additionally, high-throughput BCOC with a microfluidic system can successfully reflect the bladder cancer microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。