In vivo evaluation of percutaneous carbon dioxide treatment for improving intratumoral hypoxia using 18F-fluoromisonidazole PET-CT

使用18F-氟米索硝唑PET-CT对经皮二氧化碳治疗改善肿瘤内缺氧的体内评估

阅读:6
作者:Koji Maruyama, Takuya Okada, Takeshi Ueha, Kayako Isohashi, Hayato Ikeda, Yasukazu Kanai, Koji Sasaki, Tomoyuki Gentsu, Eisuke Ueshima, Keitaro Sofue, Munenobu Nogami, Masato Yamaguchi, Koji Sugimoto, Yoshitada Sakai, Jun Hatazawa, Takamichi Murakami

Abstract

Carbon dioxide (CO2) treatment is reported to have an antitumor effect owing to the improvement in intratumoral hypoxia. Previous studies were based on histological analysis alone. In the present study, the improvement in intratumoral hypoxia by percutaneous CO2 treatment in vivo was determined using 18F-fluoromisonidazole positron emission tomography-computed tomography (18F-FMISO PET-CT) images. Twelve Japanese nude mice underwent implantation of LM8 tumor cells in the dorsal subcutaneous area 2 weeks before percutaneous CO2 treatment and 18F-FMISO PET-CT scans. Immediately after intravenous injection of 18F-FMISO, CO2 and room air were administered transcutaneously in the CO2-treated group (n=6) and a control group (n=6), respectively; each treatment was performed for 10 minutes. PET-CT was performed 2 h after administration of 18F-FMISO. 18F-FMISO tumor uptake was quantitatively evaluated using the maximum standardized uptake value (SUVmax), tumor-to-liver ratio (TLR), tumor-to-muscle ratio (TMR), metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Mean ± standard error of the mean (SEM) of the tumor volume was not significantly different between the two groups (CO2-treated group, 1.178±0.450 cm3; control group, 1.368±0.295 cm3; P=0.485). Mean ± SEM of SUVmax, TLR, MTV (cm3) and TLG were significantly lower in the CO2-treated group compared with the control group (0.880±0.095 vs. 1.253±0.071, P=0.015; 1.063±0.147361 vs. 1.455±0.078, P=0.041; 0.353±0.139 vs. 1.569±0.438, P=0.015; 0.182±0.070 vs. 1.028±0.338, P=0.015), respectively. TMR was not significantly different between the two groups (4.520±0.503 vs. 5.504±0.310; P=0.240). In conclusion, 18F-FMISO PET revealed that percutaneous CO2 treatment improved intratumoral hypoxia in vivo. This technique enables assessment of the therapeutic effect in CO2 treatment by imaging, and may contribute to its clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。